750. The Effect of Pressure on the First Dissociation Constant of "Carbonic Acid."

By A. J. Ellis.

Abstract

The apparent first dissociation constant of " carbonic acid" has been determined for pressures up to 3000 atm . in the temperature range $25-65^{\circ} \mathrm{c}$. An increase of 2500 atm . increases this constant approximately ten-fold owing largely to the increased hydration of carbon dioxide to $\mathrm{H}_{2} \mathrm{CO}_{3}$ at high pressure.

The effects of pressure on the molar conductances of potassium chloride, hydrochloric acid and potassium hydrogen carbonate in water at these temperatures are compared with previous results. There is little change in the effects of pressure in the concentration range $0.0001-0.1 \mathrm{~m}$.

As only 0.259% of the equilibrium mixture, $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$, or " carbonic acid," is hydrated to $\mathrm{H}_{2} \mathrm{CO}_{3}$ in water at $25^{\circ}{ }^{1}$, increased pressure influences two equilibria

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3} ; \quad \mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}
$$

For comparison, the effects of pressure on the dissociation of simple weak acids such as formic, acetic, propionic acid, are available from the reviews of Cohen and Schut, ${ }^{2}$ and Hamann. ${ }^{3}$

Davies's method ${ }^{4}$ was used to obtain the acid dissociation constants for " carbonic acid " between 25° and 65°, and at various pressures. The degree of dissociation, α, of the mixture $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ into H^{+}and $\mathrm{HCO}_{3}{ }^{-}$ions was assumed to equal the ratio $\Lambda / \Lambda^{\prime}$, where Λ is the molar conductance of the mixture and Λ^{\prime} the sum of the molar conductances of the ions H^{+}and $\mathrm{HCO}_{3}{ }^{-}$at the ionic strength of the solution examined. Λ^{\prime} was obtained by interpolation of conductance values for hydrochloric acid, potassium chloride, and potassium hydrogen carbonate solutions at various concentrations, temperatures, and pressures. As indicated by Hamann ${ }^{3}$ it is safe to assume that Kohlrausch's law of independent ionic mobilities is obeyed under the conditions used.

The thermodynamic apparent dissociation constant K_{a} is given on the molal scale by the expression

$$
K_{a}=\left[\alpha^{2} m /(1-\alpha)\right] \gamma_{ \pm}^{2} / \gamma_{\mathrm{HA}}
$$

where m is the molal concentration of total carbon dioxide, and $\gamma_{ \pm}$the mean activity coefficient of the H^{+}and the $\mathrm{HCO}_{3}{ }^{-}$ion. γ_{HA}, the activity coefficient of the undissociated acid, was taken as unity at all pressures and temperatures. Values for $\gamma_{ \pm}$were obtained from the Debye-Hückel equation in the form

$$
-\log f_{ \pm}=\left\{1.8123 \times 10^{6}(D T)^{-3 / 2} c^{\frac{1}{2}}\right\} /\left\{1+50.29 \times 10^{8}(D T)^{-\frac{1}{2}} a c^{\frac{1}{1}}\right\}
$$

a was taken as $5 \times 10^{-8} \mathrm{~cm}$., and changes of the molar concentration c and the dielectric constant D with pressure were taken into consideration. At the low ionic strengths used, the molar activity coefficient $f_{ \pm}$can be taken as equal to the molal activity coefficient $\gamma_{ \pm}$. As the term $D T$ changes little with temperature in the range $25-65^{\circ}$, it was sufficient for the accuracy of the experiments to apply the 25° values of $\gamma_{ \pm}$for various pressures and concentrations at all the temperatures.

A comparison of Hamann's results ${ }^{\mathbf{3}}$ with earlier data ${ }^{2,5}$ for the conductance of strong electrolytes in water at high pressures showed that there were appreciable deviations and

[^0]these are discussed below in relation to the values obtained for solutions of potassium chloride and hydrochloric acid in the process of obtaining dissociation constants.

Experimental

Apparatus.-The stainless-steel pressure vessel (25 c.c.; 3 in. diam.) had two manganin wire electrical leads through its walls; these were insulated in a packing gland of compressed polystyrene. Into the vessel was placed the conductivity cell containing the solution, and the appropriate electrical leads were soldered together inside the vessel.

The conductivity cell (constant $0.365 \mathrm{~cm} .^{-1}$) was a Teflon cylinder, open at one end, of $7 \mathrm{c} . \mathrm{c}$. capacity. A tight-fitting Teflon piston supporting the electrodes separated the solution in the cell from medicinal paraffin used to transmit pressure within the pressure vessel. The electrode assembly in the cell consisted of platinum foil electrodes tightly bound by fine platinum wire to the arms of a U-shaped Pyrex glass piece. A thick platinum lead from one electrode supported the assembly from the Teflon piston, and a lead of fine wire from the other electrode to the piston allowed for the slight play caused by the contraction of Teflon under pressure. The cell therefore incorporated the advantages of the sliding piston design of Jamieson, ${ }^{6}$ and almost constant spacing of the electrodes by glass. The platinum in the cell was lightly coated with platinum black.

Sealed platinum-in-glass electrodes are usually broken by the application of a few thousand atm . pressure. In cells with electrodes spaced by plastic, corrections are needed for the high and often irreproducible compressibility of these substances. For example, a marked discontinuity is apparent in the conductivity results of Hamann and Strauss ${ }^{7}$ at 5000 atm . where Weir ${ }^{8}$ reported a phase change in Teflon with a 2% decrease in volume. Disadvantages of other cells used previously include direct contact of the solution with kerosene ${ }^{5}$ and with mercury. ${ }^{9}$

Pressures were developed by hand hydraulic pumps and a pressure intensifier. Bourdon gauges were calibrated against a Harwood manganin-coil resistance gauge supplied calibrated to $\pm 0 \cdot 1 \%$. With allowance for small variations in the Bourdon gauges, the pressures reported should be accurate to within $\pm 0.5 \%$.

The pressure vessel and a paraffin reservoir were heated in an oil-bath controlled to $\pm 0.05^{\circ}$. The mass of the vessel damped out temperature variations in the bath. About 2 hr . were required for the apparatus to reach initial thermal equilibrium, and a further 30 min . were required after a change of pressure for equilibrium to be regained.

The resistances were measured with a capacity-compensated non-inductive Wheatstone bridge using a 1000 c.p.s. valve oscillator as an A.C. source. Corrections to the conductances were made for the resistance of lead wires and the change in cell constant with pressure. The latter was 0.1% change per 1000 atm .

Measurements of the cell resistance were taken again at 1 atm . pressure at the end of each run. In no case were hysteresis effects important.

Materials and Method.-Solutions of potassium chloride, hydrochloric acid and potassium hydrogen carbonate were prepared from "AnalaR" reagents. A large volume of "carbonic acid" solution was prepared in a closed flask, and the liquid and the gas phase were allowed to equilibrate. A portion of this solution was run into the conductance cell, and another portion analysed.

Throughout the experiments with " carbonic acid " the pressure on the cell was kept above 50 atm . to prevent bubbles forming in the cell. A short extrapolation was made to get conductances at 1 atm . No significant amount of carbon dioxide was lost from the cell during the measurements.

The distilled water in the cell was assumed to have two types of impurity, viz., carbon dioxide and stray strong electrolyte ions. The conductance blank due to the latter, κ_{1} changes very little with pressure, while that of ionised carbonic acid, κ_{c}, increases considerably. From the conductance of the solvent at various pressures it was possible to obtain the values of κ_{i} and κ_{c}. As an example, for the water used in the experiment at 25° and 1 atm ., κ_{i} was approximately 1.0×10^{-6} and $\kappa_{\mathrm{c}} 0.5 \times 10^{-6} \mathrm{ohm}^{-1} \mathrm{~cm} .^{-1}$.

6 Jamieson, J. Chem. Phys., 1953, 21, 1385.
7 Hamann and Strauss, Trans. Faraday Soc., 1955, 51, 1684.
${ }^{8}$ Weir, J. Res. Nat. Bur. Stand., 1953, 50, 95; 1954, 53, 245.

- Buchanan and Hamann, Trans. Faraday Soc., 1953, 49, 1426.

When corrections for the solvent were made to the conductances of potassium chloride solutions ($\kappa_{1}+\kappa_{c}$) was subtracted, but for hydrochloric acid and potassium hydrogen carbonate only the blank κ_{i}, for pressure and temperature, was applied.

The correction for solvent conduction was of the order of a few units $\%$ for solutions with an ion concentration of $10^{-3} \mathrm{~m}$, but reached a maximum of 20% of the total conduction for $10^{-4} \mathrm{~m}$ potassium chloride at 25° and 3000 atm . The blank correction to the " carbonic acid " conductivities was greatest at 65° and 1 atm . where it amounted to about 10%.

Table 1.

$P($ atm. $) \ldots .$.	500	1000	1500	2000	2500	3000
$\rho_{\mathrm{r}} \ldots \ldots$.	1.021	1.039	1.058	1.073	1.088	1.103

Table 2. Hydrochloric acid: values of $\Lambda^{P_{\rho_{r}}} / \Lambda^{\mathbf{1}}(M=$ molar concentrations at $P=1)$.
(Owen and Sweeton's values ${ }^{11}$ of Λ^{1} in parentheses.

M	P (atm.)					M	P (atm.)				
	1	500	1000	2000	3000		1	500	1000	2000	3000
[0.1	(391.3)	1.050	1.088	1.152	1.193	0.1	(502.2)	1.034	1.068	$1 \cdot 120$	$1 \cdot 158$
$25^{\circ} 0.01$	(412.0)	1.051	1.089	$1 \cdot 152$	$1 \cdot 191$	45° 0.01	(530.5)	1.034	1.066	1-118	1-156
250.01	(421.4)	1.050	1.087	$1 \cdot 151$	1-191	$0 \cdot 001$	(544-2)	1.033	1.067	$1 \cdot 117$	1-154
0.0001	(424.7)	1.05	$1 \cdot 10$	$1 \cdot 16$	$1 \cdot 21$						
						55° 0.1	(554.0)	1.032	1.062	$1 \cdot 112$	$1 \cdot 148$
$\left[\begin{array}{l}0.1 \\ 0.01\end{array}\right.$	(447-3)	1.040	1.074	1.127	1-164	$55^{\circ}\left\{\begin{array}{l}0.01 \\ 0.001\end{array}\right.$	(586.5)	1.032 1.033	1.063	$1 \cdot 113$	1-149
$35^{\circ}\left\{\begin{array}{l}0.01 \\ 0.001\end{array}\right.$	(472-3)	1.041	1.075	$1 \cdot 128$	1-162	0.001	(602.3)	1.033	1.065	1-115	$1 \cdot 150$
350.001	(483.3)	1.041	1.070	$1 \cdot 126$	1.165						
0.0001	(487.0)	1.04	1.09	1-14	1-18	$0^{0 \cdot 1}$	(603.0)	1.031	1.060	1-105	$1 \cdot 142$
						$65^{\circ}\{0.01$	(640.5)	1.030	1.060	1-106	$1 \cdot 140$
						0.001	(657.5)	1.029	1.062	1-108	$1 \cdot 142$

Values of $\Lambda_{0}{ }^{P} / \Lambda_{0}{ }^{1}$ for hydrochloric acid solutions.

Temp.	$P(\mathrm{~atm})$.	1	500	1000	2000
25°	$(426 \cdot 2)$	1.028	1.048	1.074	1.080
35		$(489 \cdot 2)$	1.020	1.034	1.051
45	(550.3)	1.013	1.027	1.042	1.056
55		(609.5)	1.012	1.025	1.039
65		(666.8)	1.009	1.022	1.032

Table 3. Potassium chloride: values of $\Lambda^{P_{P_{\mathrm{r}}}} / \Lambda^{\mathbf{1}}$.
(Λ^{1} values in parentheses up to 45° from Gunning and Gordon. ${ }^{18}$ and at 55° and 65° from the present work.)

M	P (atm.) 1	500	1000	2000	3000
${ }_{0} \cdot 1$	(129.0)	1.031	1.052	1.069	1.061
$25^{\circ} 00.01$	(141.3)	1.031	1.052	1.068	1.058
2500.001	(147.0)	1.032	1.054	1.069	1.064
$0 \cdot 0001$	(149.3)	1.03	1.06	1.08	1.07
0.1	(154.7)	1.023	1.044	1.052	1.044
35° 0.01	(169.9)	1.024	1.040	1.049	1.042
$0 \cdot 001$	(176.9)	1.025	1.04(5)	1.05(5)	1.05(0)
(0.1	(180.3)	1.020	1.038	1.044	1.030
45° \{0.01	(199.7)	1.021	1.035	1.040	1.026
0.001	(208.1)	1-02(0)	1-03(5)	1.04(1)	1.03(0)
- $0 \cdot 1$	(208.3)	1.015	1.026	1.035	1.023
$55^{\circ}\{0.01$	(230-1)	1.017	1.028	1.033	1.021
0.001	(241.0)	1.02	1.03(1)	1.04(0)	1.03(0)
(0.1	(235.5)	1.014	1.026	1.026	1.011
$65^{\circ}\{0.01$	(262.3)	1.015	1.025	1.027	1.012
0.001	(278.2)	1.01 (5)	1-02(3)	1.02(6)	1.01(7)

Values of $\Lambda_{0}{ }^{P} / \Lambda_{0}{ }^{1}$ for KCl solutions.

($\Lambda_{0}{ }^{1}$ values to 45° from Gunning and Gordon ${ }^{12}$ in parentheses.)						
Temp.	P (atm.)	1	50	1000	2000	3000
25°		(149.9)	1.011	1.014	0.996	0.964
35		(180.5)	1.004	1.004	0.979	0.947
45		(212.5)	1.000	0.997	0.971	0.931
55		(246.0)	0.996	0.989	0.965	0.927
65		(281.3)	0.994	0.987	0.957	0.917

Buchanan and Hamann ${ }^{9}$ defined the molal conductance of an electrolyte as Λ (molal) $=$ $1000 L^{\prime} / m$, where m is the molality of the electrolyte, which is independent of pressure, and L^{\prime} the specific conductance of the solution corrected for the solvent blank.

At low ionic strengths the following approximate relation holds, Λ (molal) $=\Lambda d$, where d is the density of the solution. This equation is valid at all concentrations used in the present experiments within the possible experimental error.

In this work the product Λd is used instead of the term molal conductance, as the former emphasises that the increase in conductance with pressure is due to both a volume factor and one involving the mobility of the ions.

The results are reported as the ratios $\Lambda^{P}{ }_{\rho_{r}} / \Lambda^{1}$ where Λ^{P} and Λ^{1} are the molar conductances of the electrolytes at a pressure P and at 1 atm., respectively. p_{r} is the corresponding density ratio $\rho^{P} / \rho^{\mathbf{1}}$ for water at the temperature. Values of ρ_{r} taken from Dorsey ${ }^{\mathbf{1 0}}$ and given in Table 1 represent the solution densities within $\pm 0.2 \%$ in the temperature range $25-65^{\circ}$.

Electrolyte solutions ranging from 0.1 to 0.0001 m were examined up to 3000 atm . at temper-

TABLE 4. Potassium hydrogen carbonate: values of $\Lambda^{P_{\rho_{r}}} / \Lambda^{\mathbf{1}}$.
(Λ^{1} values in parentheses based on Shedlovsky and MacInnes's results ${ }^{13}$ up to 40°, and the present work.)

M	P (atm.)					M	P (atm.)				
	1	500	1000	2000	3000		1	500	1000	2000	3000
[0.1	(97.7)	1.025	1.041	1.050	1.034	0.1	(138)	1.014	1.020	1.021	1.004
$25^{\circ} 00.01$	(110.1)	1.026	1.042	1.048	1.031	45° 0.01	(155.0)	1.013	1.022	1.023	1.002
25° 0.001	(115.3)	1.024	1.041	1.049	1.033	0.001	(163.5)	$1 \cdot 115$	1.024	1.025	1.005
0.0001	(117.3)	1.03	1.05	1.06	1.04						
						${ }^{0 \cdot 1}$	(158)	1.012	1.016	1.014	
$35^{\circ}\left\{\begin{array}{l}0.1 \\ 0.01\end{array}\right.$	(118)	1.019	1.031	1.034	1.019	$55^{\circ}\{0.01$	(178.5)	1.010	1.015	1.012	0.992 0.996
$35^{\circ}\left\{\begin{array}{l}0.01 \\ 0.001\end{array}\right.$	(131.8)	1.018	1.030	1.033	1.017	0.001	(189.0)	1.014	1.014	1.015	0.996
$\{0.001$	(139.2)	1.020	1.032	1.032	1.016			1.008	1.013	1.002	0.986
						$65^{\circ}\left\{\begin{array}{l}0.1 \\ 0.01\end{array}\right.$	(202.8)	1.007	1.010	1.004	0.984
						0.001	(189.0)	1.009	1.012	1.004	0.987

Values of $\Lambda_{0}{ }^{P} / \Lambda_{0}{ }^{1}$ for KHCO_{3} solutions.					
Temp.	$P(\mathrm{~atm})$.	1	500	1000	2000
25°		(118.0)	1.005	1.002	0.978
$\mathbf{3 5}$		(141.5)	0.999	0.992	0.963
45		(179.3)	0.993	0.985	0.954
55		(192.8)	0.989	0.977	0.944
65		(219)	0.987	0.974	0.936

Table 5. The effect of pressure on the conductance of the distilled water used in the experiments: Typical values of specific conductivity $\times 10^{6}\left(\mathrm{ohm}^{-1} \mathrm{~cm} .^{-1}\right)$.

Temp.	P (atm.)	1	1000	2000
25°		$1 \cdot 5$	$2 \cdot 1$	$2 \cdot 7$
45		$3 \cdot 2$	$5 \cdot 0$	$5 \cdot 9$
65		$5 \cdot 1$	$7 \cdot 4$	$9 \cdot 3$

atures between 25° and 65°. The results for $10^{-4} \mathrm{M}$-solutions were of little significance above 35° because of the high solvent correction to the conductances.

Tables 2 to 4 give, in order, the change in conductivity with pressure for solutions of hydrochloric acid, potassium chloride, and potassium hydrogen carbonate. Table 5 gives the change in conductivity for water in equilibrium with the cell assembly.

The values of $\Lambda^{P_{\rho_{r}} / \Lambda^{1}}$ did not change significantly with concentration in the range $0 \cdot 1$ 0.0001 m . At the end of each of the Tables $2-4$ values for the ratio $\Lambda^{P}{ }_{0} / \Lambda^{1}{ }_{0}$ are given for the electrolytes. To obtain these values it was assumed that the effects of pressure on conductance remained constant down to infinitely small electrolyte concentrations.

[^1]Table 6. "Carbonic acid."

$\Delta V^{1}=-26.5$ c.c. mole ${ }^{-1} ; \Delta V^{3000}=-20.7$ c.c. mole ${ }^{-1} ;$ Average $\Delta K=-0.0019 \mathrm{~atm} .^{-1}$ c.c. mole ${ }^{-1}$.

At 35°					
3.32	1	1.696	448	$0 \cdot 974$	$\left(4.7 \times 10^{-7}\right)$
"	1390	$3 \cdot 809$	492	0.966	4.16
	2930	7.791	521	$0 \cdot 956$	15.5
3.19	1	1.714	448	0.974	$\left(4 \cdot 6 \times 10^{-7}\right)$
"	1030	3.161	481	0.969	2.93
,	2040	$5 \cdot 343$	507	$0 \cdot 962$	7.54
	2930	7.968	521	0.956	$15 \cdot 9$
3.46	1	1.695	448	$0 \cdot 974$	$\left(4.9 \times 10^{-7}\right)$
"	1010	3.066	481	$0 \cdot 968$	$2 \cdot 82$
,	2040	$5 \cdot 261$	507	0.961	$7 \cdot 46$
	2930	7.856	521	$0 \cdot 955$	$15 \cdot 8$
1.51	1	2.558	448	0.978	$\left(4.9 \times 10^{-7}\right)$
"	1030	4.720	482	$0 \cdot 973$	$2 \cdot 94$
,	2030	7.940	507	0.968	7.51
	2930	11.85	521	0.963	15.9
1.18	1	2.970	448	0.979	$\left(5.1 \times 10^{-7}\right)$
,	1390	6.386	492	0.974	$3 \cdot 83$
	2640	12.01	517	$0 \cdot 966$	$12 \cdot 3$
2.53	1	1.972	448	0.977	$\left(4 \cdot 8 \times 10^{-7}\right)$
"	1390	4.397	492	0.970	$4 \cdot 11$
	2780	8.527	519	0.961	13.9
$3 \cdot 40$		1.674	448	0.975	$\left(4.7 \times 10^{-7}\right)$
"	1050	3.130	482	0.970	3.00
,	2030	$5 \cdot 144$	507	0.964	7.33
"	2930	7.700	521	$0 \cdot 959$	15.6

$\Delta V^{1}=-25 \cdot 4$ c.c. mole ${ }^{-1} ; \Delta V^{3000}=-20.0$ c.c. mole ${ }^{-1} ;$ Average $\Delta K=-0.0018 \mathrm{~atm} .^{-1}$ c.c. mole ${ }^{-1}$.

At 45°					
$2 \cdot 99$	1	2.066	506	0.976	$\left(4.9 \times 10^{-7}\right)$
"	1320	$4 \cdot 250$	547	$0 \cdot 968$	3.61
	2500	7.397	576	$0 \cdot 960$	9.83
$2 \cdot 48$	1	$2 \cdot 276$	506	0.975	$\left(4.9 \times 10^{-7}\right)$
"	1030	$4 \cdot 117$	540	$0 \cdot 970$	$2 \cdot 85$
"	2010	6.728	565	0.965	6.99
	2930	$10 \cdot 11$	586	0.960	14.7
3•74	1	1.903	506	$0 \cdot 972$	$\left(5.2 \times 10^{-7}\right)$
,	1030	$3 \cdot 420$	540	0.967	$2 \cdot 83$
"	2030	$5 \cdot 614$	565	0.961	6.95
,	3000	8.544	587	0.954	14.9

[^2]Table 6. (Continued.)
$100 \times$ concn. (molal)

3.71	1	1.850
"	1010	$3 \cdot 238$
"	2010	$5 \cdot 328$
,	2780	$7 \cdot 487$
	2930	7.933
2.94	1	2.075
"	1020	$3 \cdot 633$
,	2010	$5 \cdot 951$
	3000	$9 \cdot 192$
$2 \cdot 48$	1	$2 \cdot 264$
,	1390	4.931
"	2780	$9 \cdot 30$
,"	3000	$10 \cdot 16$

At 45°

$\Lambda^{1} \rho_{r}$

506
539
565
582
585
506
539
565
587
506
549
583
588
$\gamma_{ \pm}{ }^{2}$
0.972
0.968
0.962
0.957
0.956
0.976
0.970
0.964
0.959
0.975
0.961
0.959
$K_{a}{ }^{P} / K_{a}{ }^{1 *}$
(molal scale)
$\left(4.8 \times 10^{-7}\right)$
$2 \cdot 70$ $6 \cdot 63$
$12 \cdot 3$
$13 \cdot 7$
$\left(4.8 \times 10^{-7}\right)$
$2 \cdot 70$
6.57
$14 \cdot 5$
$\left(4.9 \times 10^{-7}\right)$ 4.03 $12 \cdot 7$ 14.9
$\Delta V^{1}=-24 \cdot 8$ c.c. $\mathrm{mole}^{-1} ; \Delta V^{3000}=-18.4$ c.c. mole ${ }^{-1} ;$ Average $\Delta K=-0.0021 \mathrm{~atm} .^{-1} \mathrm{c.c} . \mathrm{mole}^{-1}$.

$\Delta V^{1}=-24.3$ c.c. mole ${ }^{-1} ; \Delta V^{3000}=-17.5$ c.c. mole ${ }^{-1}$; Average $\Delta K=-0.0023 \mathrm{~atm} .^{-1}$ c.c. mole ${ }^{-1}$.

$2 \cdot 46$	1	$2 \cdot 706$
"	1080	4.726
"	2080	7.558
	2850	10.45
2.32	1	$2 \cdot 845$
"	1010	4.922
"	2010	$7 \cdot 886$
"	2700	10.44
	2780	10.87
3.71	1	$2 \cdot 193$
"	1060	3.840
",	2080	6.127
	2790	8.215
1.59	1	$3 \cdot 380$
"	1400	6.997
\%	2790	12.69
2.50	1	2.724
"	1040	4.729
,	2570	9.531

At 65°

606	0.975	$\left(4.8 \times 10^{-7}\right)$
644	0.971	2.70
671	0.966	6.34
689	0.963	$11 \cdot 5$
606	0.975	$\left(5 \cdot 0 \times 10^{-7}\right)$
642	0.972	2.67
669	0.965	6.30
685	0.961	10.5
687	0.961	$11 \cdot 3$
606	0.974	$\left(4.8 \times 10^{-7}\right)$
642	0.968	2.72
671	0.962	6.33
687	0.959	10.8
606	0.978	$\left(4.9 \times 10^{-7}\right)$
653	0.972	$3 \cdot 68$
688	0.965	$10 \cdot 9$
606	0.975	$\left(5.0 \times 10^{-7}\right)$
642	0.970	2.67
683	0.963	9.62

$\Delta V^{1}=-23.6$ c.c. mole ${ }^{-1} ; \Delta V^{3000}=-16.8$ c.c. mole ${ }^{-1} ;$ Average $\Delta K=-0.0023 \mathrm{~atm} .^{-1}$ c.c. mole ${ }^{-1}$. * Values of K_{a} at $P=1$ in parentheses.

Wherever possible, accurate values of Λ^{1} from other measurements ${ }^{11-13}$ are included with the conductance ratios in the Tables. The units of the Λ values reported are $\mathrm{cm}^{2} \mathrm{ohm}^{-1} \mathrm{~mole}^{-1}$.

Table 6 gives the results for the changes with pressure of the apparent dissociation constant K_{a} of carbonic acid. The product $\Lambda \rho_{\mathrm{r}}$ (and hence $\alpha=\Lambda \rho_{\mathrm{r}} / \Lambda^{\prime} \rho_{\mathrm{r}}$) was obtained from the specific conductivities L^{\prime} by the relation $\Lambda \rho_{r}=1000 L^{\prime} / m \rho^{1}$, where ρ^{1} is the density of the acid solution (~water) at 1 atm . pressure.

The volume change on ionisation at infinite dilution was calculated from the slope of $\log \left(K_{a}^{P} / K_{a}^{1}\right)$ versus pressure graphs at $1 \mathrm{~atm} .\left(\Delta V^{1}\right)$ and at 3000 atm . (ΔV^{3000}).
$\left(\delta \ln K_{a}\right) /(\delta P)_{T, m}=-\Delta V / \boldsymbol{R} T$

$$
(-\delta \Delta V / \delta P)_{T, m}=\Delta K \approx\left(\Delta V^{3000}-\Delta V^{1}\right) / 3000
$$

From the latter relation the average value for the change in compressibility (ΔK) on ionisation in the pressure range $1-3000 \mathrm{~atm}$. was obtained at each temperature.

Discussion

Figs. 1-3 summarise the results for hydrochloric acid, potassium chloride, and potassium hydrogen carbonate, and also show some values of $\Lambda^{P}{ }_{\mathrm{p}_{\mathrm{r}}} / \Lambda^{1}$ obtained by previous

Fig. 1. $0.01 \mathrm{~m}-\mathrm{Hydrochloric} \mathrm{acid.-Our} \mathrm{values}. \mathrm{----Literature} \mathrm{values:} \mathrm{A,Hamann} \mathrm{and} \mathrm{Strauss}$, ref. 7; B, Korber, ref. 14; C, Buchanan and Hamannn, ref. 9; D, Zisman, ref. 5.

workers. The agreement is not good, and the results of Hamann and Strauss ${ }^{7}$ are anomalous. The effect of pressure on conductance was found to decrease with temperature in the manner reported by Korber ${ }^{14}$ and Zisman. ${ }^{5}$

[^3]Zisman ${ }^{5}$ and Hamann and Strauss ${ }^{7}$ examined the effects of pressure on conductance up to pressures of $10,000 \mathrm{~atm}$. The latter workers suggested that Zisman's results were in error by several units \%, but the present observations do not support this suggestion.

Fig. 4 shows the ratios $\Lambda_{0}{ }^{P} / \Lambda_{0}{ }^{1}$ for potassium hydrogen carbonate solutions, together with Bridgman's ratios ${ }^{15}$ of the viscosity η^{1} / η^{P} for $18^{\circ}, 30^{\circ}$, and 75°. The variation of $\Lambda_{0}{ }^{P} / \Lambda_{0}{ }^{1}$ with pressure is similar for most salts in that the values pass through an initial maximum or a curvature in the same sense before decreasing steadily with increasing pressure.

For 16 salts Zisman ${ }^{5}$ showed that at 30° and 75° the ratio $\Lambda^{P} / \Lambda^{1}$ decreased almost linearly with pressure in the range $3000-8000 \mathrm{~atm}$., and always with the same slope.

Fig. 2. 0.01 m -Potassium chloride.

The increase in the viscosity of water at these temperatures and pressures is also approximately linear with pressure, but the increase in viscosity is more rapid than the decrease in conductance for the same temperature.

The compressibility of ions, derived from measurements on crystals of the alkali halide type, is only about one tenth of the compressibility of water at moderate pressures. ${ }^{15}$ The effect of pressure on conductance should therefore be related mainly to changes in solvent structure and in ion-solvent interaction.

For a 1:1 electrolyte the Debye-Hückel-Onsager equation can be written ${ }^{\mathbf{1 6}}$ in the form

$$
\Lambda_{0}-\Lambda=\left[\frac{A \Lambda_{0}}{(D T)^{3 / 2}}+\frac{B}{\eta(D T)^{1 / 2}}\right] c^{1 / 2}
$$

A and B are positive constants and D is the dielectric constant.

[^4]Both D and η for pure water increase at high pressures and Λ_{0} decreases. As discussed by Hamann, ${ }^{3}$ the effect of pressure on conductance could be expected to decrease with increasing concentration. For example, for potassium chloride it would be expected that at $3000 \mathrm{~atm} . \Lambda_{0}{ }^{P} / \Lambda_{0}{ }^{1}$ would be about $3 \cdot 5 \%$ greater than $\Lambda^{P} / \Lambda^{1}$ for a $0 \cdot 1 \mathrm{M}$-solution.

Variations with concentration of this order were not found in the present experiments with solutions up to $0 \cdot 1 \mathrm{~m}$. However, Korber's results ${ }^{14}$ provide a good example of the decreasing pressure effect at higher concentrations.

The apparent disagreement with the Debye-Hückel-Onsager equation below $0 \cdot 1 \mathrm{~lm}$ must result from the assumption that the values of D and η for the salt solutions at high

Fig. 3. $\quad 0.01 \mathrm{~m}-$ Potassium hydrogen carbonate.

Fig. 4.

- Values of $\Lambda_{0}{ }^{P} / \Lambda_{0}{ }^{1}$ for KHCO_{3} solutions at $25^{\circ}, 3^{\circ}, \mathbf{4 5}^{\circ}$, 55°, and 65°.
- - - Bridgman's values for ratio η^{1} / η^{P} at $18^{\circ}, 30^{\circ}$, and 75°
pressures correspond to those for water at the same temperature. Zisman ${ }^{5}$ showed that the initial maximum in the graph of $\Lambda^{P} / \Lambda^{1}$ for neutral salts was greatest and occurred at highest pressures for small ions of high valency. These are order-producing ions which, in the terminology of Frank and Evans, ${ }^{17}$ lower the structural temperature of water. In Fig. 4 the variation of η^{1} / η^{P} with pressure corresponds to the ratio $\Lambda_{0}{ }^{P} / \Lambda_{0}{ }^{1}$ for a rather higher temperature. It is not sufficient to relate the changes in conduction at high pressure with the changes in physical properties of pure water at the same temperature.

For aqueous solutions there appear to be two opposing factors in operation which tend to counterbalance each other with changing concentrations below about $0 \cdot 1 \mathrm{~m}$. The

[^5]decreased pressure effect on conductance predicted at higher concentrations by the Debye-Hückel-Onsager relationship is opposed by the lower structural temperature of water at increased salt concentrations. The pressure effect on conductance in water is greatest at low temperatures.

For "carbonic acid," ΔV^{1} becomes more positive with increasing temperature. A similar behaviour was calculated by Owen and Brinkley ${ }^{18}$ for ΔV^{1} for the ionisation of water. They considered that ΔV^{1} would continue to increase with temperature until at very high temperatures the ionisation of weak acids was decreased by pressure. It is thought more likely that ΔV^{1} increases with temperature, passes through a maximum, and becomes increasingly negative at high temperatures. The present results for "carbonic acid " show that the increase in $\Delta V^{\mathbf{1}}$ for a given temperature rise becomes less at higher

Fig. 5. The variation with pressure of the apparent dissociation constant of "carbonic acid " in the temperature range $25-65^{\circ}$.

temperatures. It is known that at temperatures approaching, and exceeding the critical temperature of water, increased pressure greatly increases the ionisation of all electrolytes. ${ }^{19}$

The effect of pressure on the ionisation of "carbonic acid" has not been studied before in detail, although Brander ${ }^{20}$ found that pressure had an abnormally large influence on the conductance of carbon dioxide solutions. Owen and Brinkley ${ }^{18}$ calculated ΔV^{1} at infinite dilution by use of experimental values for the partial molal volumes of the hydrogen and bicarbonate ions, and of carbon dioxide in solution.

Owen and Brinkley's estimated value of ΔV^{1} for "carbonic acid" at 25° was -29 c.c. mole ${ }^{-1}$, but it was based on an early experimental value of the partial molar volume of carbon dioxide in solution. They assumed that $-\Delta K$ for ionisation was greater than 1.0×10^{-3}; the present results show it to be equal to 1.9×10^{-3} at 25°.

True carbonic acid, $\mathrm{H}_{2} \mathrm{CO}_{3}$, has a dissociation constant at 25° and 1 atm . of 1.72×10^{-4}, which is very close to the value of K_{a} given by Harned and Owen ${ }^{21}$ for formic acid ($1.772 \times$

[^6]10^{-4} at 25°). As the two molecules are very similar they would be expected to differ only slightly in properties:

If it is assumed that $\Delta V^{\mathbf{1}}$ at 25° for the ionisation of $\mathrm{H}_{2} \mathrm{CO}_{3}$ is equal to that for formic acid ($-8 \cdot 8$ c.c. mole $^{-1}$), ${ }^{7}$ a value of ΔV_{h} for the hydration of carbon dioxide to carbonic acid can be obtained:

$$
\Delta V_{h} \approx \Delta V^{1}\left({ }^{\prime} \text { carbonic acid '") }-\Delta V^{1} \text { (formic acid }\right)=-17 \cdot 7 \text { c.c. mole }{ }^{-1}
$$

It is evident that pressure has a considerable influence on the hydration of carbon dioxide, and it would be expected to have a similar effect on the hydration of other gases which form ionised solutions, e.g., ammonia, amines, sulphur dioxide. In a $0 \cdot 1 \mathrm{~m}$-ammonia solution, Moore and Winmill ${ }^{22}$ found that NH_{3} was present to the extent of 46.2% and $\mathrm{NH}_{4} \cdot \mathrm{OH} 52 \cdot 4 \%$. The true dissociation constant of $\mathrm{NH}_{4} \cdot \mathrm{OH}$ is about 4×10^{-5}.

Hamann ${ }^{3}$ considered that the increased ionisation of weak electrolytes at high pressure was due essentially to the enhanced solvation of the ions with respect to the un-ionised molecules. He calculated the change in free energy of hydration of singly charged ions at high pressures using Born's formula :

$$
\Delta G^{\circ}(\text { solvation })=-\frac{N e^{2}}{2 r}\left(1-\frac{1}{D}\right)
$$

where \boldsymbol{N} is Avogadro's number, \boldsymbol{e} the electronic charge, D the dielectric constant, and \boldsymbol{r} the mean radius of the two ions. As r decreases and D increases with pressure, ΔG° (solvation) increases.

That this is an oversimplification for weak acids and bases of the hydrated gas type is shown by the present series of results. A calculation for the effect of pressure on ammonia ionisation was given by Hamann, ${ }^{3}$ using the compressibility of cæsium fluoride as a model for the compressibilities of the ammonium and hydroxyl ions. The values obtained for the ratio $K_{a}{ }^{P} / K_{a}{ }^{1}$ were lower than those from experiment by a factor of about two over the pressure range $3000-6000 \mathrm{~atm}$. This would indicate that ammonia is present in solution at these pressures almost entirely as $\mathrm{NH}_{4} \cdot \mathrm{OH}$.

If ΔV_{h} is assumed not to change appreciably with pressure at 25°, the fraction of carbon dioxide in solution present as $\mathrm{H}_{2} \mathrm{CO}_{3}$ rises from $0 \cdot 259 \%$ at 1 atm . to $2 \cdot 3 \%$ at 3000 atm .

It is evident therefore that the Born equation should not be used to predict the increase with pressure in the apparent ionisation constant for substances such as $\mathrm{CO}_{2}, \mathrm{SO}_{2}$, and NH_{3}, where a hydration step precedes ionisation.

[^7]
[^0]: ${ }^{1}$ Wissbrun, French, and Patterson, J. Phys. Chem., 1954, 58, 693.
 ${ }^{2}$ Cohen and Schut, "Piezochemie Kondensierter Systeme," Akademische Verlagsgesellschaft m.b.H., Leipzig, 1919.
 ${ }^{3}$ Hamann, "Physico-chemical Effects of Pressure," Butterworths, London, 1957.
 ${ }^{4}$ Davies, J. Phys. Chem., 1925, 29, 977.
 ${ }^{5}$ Zisman, Phys. Review, 1932, 39, 151.

[^1]: 10 Dorsey, " Properties of Ordinary Water-substance," Amer. Chem. Soc. Monograph No. 81, 1940.

[^2]: * Values of $K_{\mathbf{a}}$ at $P=1 \mathrm{in}$ parentheses.

[^3]: 11 Owen and Sweeton, J. Amer. Chem. Soc., 1941, 63, 2811.
 ${ }_{12}$ Gunning and Gordon, J. Chem. Phys., 1942, 10, 126.
 ${ }^{13}$ Shedlovsky and MacInnes, J. Amer. Chem. Soc., 1935, 54, 1429.
 ${ }^{14}$ Korber, Z. phys. Chem., 1909, 67, 212.

[^4]: ${ }^{15}$ Bridgman, "The Physics of High Pressures," G. Bell and Sons, London, 1931.
 ${ }^{16}$ MacInnes, " The Principles of Electrochemistry," Reinhold, New York, 1939.

[^5]: ${ }^{17}$ Frank and Evans, J. Chem. Phys., 1945, 13, 507.

[^6]: 18 Owen and Brinkley, Chem. Rev., 1941, 29, 461.
 ${ }^{19}$ Ellis and Fyfe, Rev. Pure and Appl. Chem., 1957, 7, 261.
 ${ }^{20}$ Brander, Soc. Sci. Fenn., Phys. Math., 1932, 6, 1.
 ${ }_{21}$ Harned and Owen, "The Physical Chemistry of Electrolyte Solutions," Reinhold, New York, 1950.

[^7]: This work was done at the Chemistry Department, University of Otago, and the author thanks Prof. H. N. Parton and Dr. W. S. Fyfe for their helpful comments. He also thanks the Director, Dominion Laboratory, for permission to publish.

